Стокса формула - Definition. Was ist Стокса формула
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Стокса формула - definition

ОДНА ИЗ ОСНОВНЫХ ТЕОРЕМ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ И МАТЕМАТИЧЕСКОГО АНАЛИЗА ОБ ИНТЕГРИРОВАНИИ ДИФФЕРЕНЦИАЛЬНЫХ ФОРМ
Стокса формула

Стокса формула         

формула преобразования криволинейного интеграла по замкнутому контуру L в поверхностный интеграл по поверхности Σ, ограниченной контуром L. С. ф. имеет вид:

,

причём направление обхода контура L должно быть согласовано с ориентацией поверхности Σ. В векторной форме С. ф. приобретает вид:

,

где а = Pi + Qj + Rk, dr - элемент контура L, ds - элемент поверхности Σ, n - единичный вектор внешней нормали к этой поверхности. Физический смысл С. ф. состоит в том, что Циркуляция векторного поля по контуру L равна потоку вихря (См. Вихрь) поля через поверхность Σ. С. ф. предложена Дж. Г. Стоксом в 1854.

В гидромеханике формулой Стокса иногда называют Стокса закон.

СТОКСА ФОРМУЛА         
формула, связывающая криволинейный интеграл по замкнутому контуру с поверхностным интегралом по поверхности, ограниченной этим контуром. Предложена Дж. Г. Стоксом в 1854.
Теорема Стокса         
Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж.

Wikipedia

Теорема Стокса

Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.